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ABSTRACT 

Computer models and simulations have become an indispensable tool for 

solving complex problems in many parts of vehicle development including 

powertrain engineering, mobility assessment, survivability analysis, and 

manufacturing and life cycle assessment. As computational power has increased 

and model accuracy has improved, engineers have come to depend on simulations 

to investigate and characterize systems. This raises the importance of model 

calibration and validation. Calibration is the process of tuning model parameters 

which are not directly measured in physical tests. These parameters maybe physical 

properties (material and soil properties, manufactured dimensions, engine 

operating points) which are difficult to measure or entirely non-physical model 

parameters. Calibration is necessary to ensure that models and simulation results 

are as close to physical reality as possible given modeling limitations and 

assumptions. This paper presents a calibration framework which implements 

automated statistical calibration using kriging emulators. Through a combination 

of advanced experimental designs and numerical techniques, this framework 

greatly reduces the computation required to fit emulators. The utility of this 

framework is demonstrated with examples including the calibration of turbo 

machinery simulations. Several different methods within the framework are also 

demonstrated: agreement and linkage based calibration, and automated sensitivity 

analyses. 
 

INTRODUCTION 
Computer models and simulations have become an 

indispensable tool for solving complex problems in many 

parts of vehicle development including powertrain 

engineering, mobility assessment, survivability analysis, and 
manufacturing and life cycle assessment. As computational 

power has increased and model accuracy has improved, 

engineers have come to depend on simulations to investigate 

and characterize systems. This raises the importance of model 

calibration and validation.   

Calibration is the process of tuning model parameters which 

are not directly measured in physical tests. These parameters 

maybe physical properties (material and soil properties, 
manufactured dimensions, engine operating points) which are 

difficult to measure or entirely non-physical model 

parameters. Calibration is necessary to ensure that models and 
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simulation results are as close to physical reality as possible 

given modeling limitations and assumptions [1].   

Next generation simulation tools are including even more 

detailed physics, greater complexity, and more parameters. 

Physical tests, though relatively expensive and slow, have 

also benefited from advances in electronics and are now able 
to produce massive amounts of data. Extremely detailed 

vehicle telemetry is common and handling it has become a 

question of big data analysis.  These trends towards more 

complex models and large physical test data sets present new 

challenges and opportunities when calibrating models [2]. 

Traditional automated calibration methods rely on 

computing correlation coefficients, R2 values etc., or 

calculating an error term and then using optimization 

techniques to maximize the correlation or minimize the error. 

For complex simulations, where there are many possible 

calibration parameters, this becomes a computationally 

intensive high-dimensional optimization problem. Thus it is 
often necessary to limit the number of parameters being 

considered via experience/domain expertise or analytic 

methods such as sensitivity analysis. Similarly, when large 

quantities of test data are available, it is often necessary to 

create summary variables or selective sub-samples again 

requiring significant expertise and data handling capability.  

Statistical calibration methods have several important 

advantages over more traditional approaches. First, it allows 

for all sources of uncertainty, including the remaining 

uncertainty over the fitted parameters. Second, it can 

determine the discrepancy between the model and the 
observed data for optimized calibration parameters. 

Determining model discrepancy is useful for highlighting 

inadequacies in models and, by demonstrating low 

discrepancy, model validation [3]. 

Unfortunately, statistical calibration methods are also 

computationally intensive, exacerbating the increase in 

computational difficulty from increasing the number of 

calibration parameters. This paper presents a calibration 

framework which implements automated statistical 

calibration using kriging emulators. Through a combination 

of advanced experimental designs and numerical techniques, 

this framework greatly reduces the computation required to fit 
emulators. This allows accurate emulators to be constructed 

for large numbers of input points and high dimensional 

system. These emulators are then used as surrogates for the 

physics-based model in the statistical calibration process. 

Evaluating the emulator in place of the physics-based model 

can reduce the computational effort and time required for 

statistical calibration by orders of magnitude [4]. 

The utility of this framework is demonstrated with a 

closed form analytical examples with structural similarity to 

an engine exhaust model and with a GT-Power [5]  model of 

a single cylinder diesel engine  [6]. Several different methods 

within the framework are also demonstrated: agreement and 

linkage based calibration and automated sensitivity analyses.  

 

EXAMPLE: CLOSED FORM EQUATION  
As a test example consider the following function: 

 

𝑦(𝑥, 𝑐) = 𝑐1
𝑒𝑥𝑝(𝑐2 ∗ (𝑥1 + 𝑥2))

3
+ 𝑐3𝑥4 sin(𝑐4𝑥3) + 𝑐2𝑐4𝑥3 

 

(1) 

where x = (x1, …, x4) and c = (c1, …, c4) are calibration 

parameters. The surface produced by this function has similar 

complexity and structure to that of many semi-cyclical gas 

flow and concentration models such as engine exhaust 

streams.  

Simulation data were collected by evaluating the function 

with an optimal LHD DOE of 300 points cover the full ranges 

of x and c. Simulated ‘field data’ were collected by evaluating 

the function with a DOE of 70 points covering the full range 

of x while fixing all c values at ‘true’ values of (2,1, -1, 1). 

To determine the ‘unknown’ true values of the calibration 
parameters from the simulated field data an agreement-based 

statistical calibration method was employed. Calculating the 

calibration parameters took approximately 2 seconds per 

iteration. We replicated the calibration process 100 times, 

taking approximately 3.5 minutes, to reduce noise from the 

stochastic nature of the calibration process. The averaged 

results are summarized in Table 1. The calibration parameter 

estimates are very close to the true values, indicating a good 

fit. 

 

 Table 1: Summary of estimated calibration parameters 

over 100 replications.  

Parameters True value Mean Std. Error 

c1 2 2.02 0.065 

c2 1 0.99 0.018 

c3 -1 -1.04 0.056 

c4 1 0.99 0.033 

 

The discrepancy of the calibrated model from the simulated 

field data was calculated and plotted in Figure 1. The 

discrepancies are small and centered around zero indicating, 

as is expected in this case, that the emulator is capable of fully 
explaining the field data.  
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Figure 1: Result point calibration discrepancy plot 

 
EXAMPLE: LINKAGE VS AGREEMENT BASED 
CALIBRATION METHODS IN A 1D ENGINE MODEL 

In this example a single cylinder direct injection 

compression ignition engine was modeled using GT-Power. 

The piston geometry is shown in Figure 3 and the GT-Power 

model information flow in Figure 2. Seven Inputs were 

parameterized: Bore, Stroke, Connection Rod Length, Inlet 

Diameter, Compression Ratio, Injected Mass, and Injection 

Duration. The output of interest was the Break Mean Engine 

Pressure (BMEP) at 2000 [RPM].  

 

 
Figure 2: GT Power model diagram.  

 
Figure 3: Cylinder geometry diagram. 

A 200 point optimal LHD, Figure 4, was used to collect 

simulation data from the engine model based on the ranges 

for the seven input parameters specified in Table 2.  

 

Table 2 GT Power Model Input Parameters 

Input Parameter Lower Limit Upper Limit Unit 

Bore 70 110 [mm] 

Stroke 60 100 [mm] 

Rod Length 120 190 [mm] 

Comp. Ratio 10 20 [-] 

Inlet Diam 35 45 [mm] 

Injected Mass 50 110 [mg] 

Injection Duration 10 25 [deg] 

 

 
Figure 4: Simulation DOE Optimal LHD with 7 

dimensions and 200 Runs 
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The simulated ‘experimental data’ consisted of a 100 run 

optimal LHD covering the entire range for six of the input 

parameters and holding the fuel injection mass constant at 60 

[mg].  

Two separate statistical calibration techniques were used to 

calculate optimal calibration parameters to match the 
simulation and field data. The first was agreement-based 

calibration, which is well suited for noisy, low bias settings. 

The second was linkage-based calibration, which is well 

suited to high bias settings.  

As would be expected when using unbiased simulated field 

data, the agreement based method did significantly better than 

the linkage-based method with calculated fuel mass injection 

values of 59.95 [mg] and 65.04 [mg] respectively. This is 

reflected in the discrepancy by physical plots shown in Figure 

5 and Figure 6.  While both methods had small relative 

discrepancies, the agreement based method produces 

discrepancies that appear more or less randomly centered 
around 0.  The linkage based method resulted in increased 

bias and a clear pattern in the discrepancy values.  

 

 
Figure 5: Discrepancy plot for the agreement-based 

calibration. 

 
Figure 6: Discrepancy plot for the linkage-based 

calibration 

In addition to testing the effects of the two different 

calibration methods, the 200 points from the simulation DOE 

were also used to construct an emulator. This highlights the 

utility of using expensive data sets for multiple purposes. The 

emulator took 0.9 [s] to construct and was relatively accurate 

with a CV Error of 0.28 [-]. Once constructed the emulator 

was used to explore the model design space, Figure 7, and test 

the domain wide sensitivity of the BMEP to the input 

variables, Figure 8.  

 
Figure 7: BMEP plotted as a function of Stroke and 

Bore while holding all other variables constant at the 

center of their ranges. 
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Figure 8: Main and total effect sensitivity indices for 

BMEP. 

The sensitivity analysis results indicate that the variation in 

BMEP over the entire design region is mostly the result of 

changes in the Bore diameter, followed by Stroke length. 

Injected Mass and Compression Ratio each had a small 

impact while injection duration, air inlet diameter, and rod 

length all had negligible impact.  

 

CONCLUSION 
Calibration is the process of tuning model parameters which 

are not directly measured in physical tests. Calibration is 

necessary to ensure that models and simulation results are as 

close to physical reality as possible given modeling 

limitations and assumptions.  

Statistical calibration methods allow all sources of 

uncertainty, including the remaining uncertainty over the 

fitted parameters to be included in the calculations. They also 

determine the discrepancy between the model and the 

observed data for optimized calibration parameters. 

Determining model discrepancy is useful for highlighting 
inadequacies in models and, by demonstrating low 

discrepancy, model validation. 

The examples presented illustrate the importance of 

calibrating the model before performing additional analyses 

such as a forward propagation of uncertainty and using these 

data in a decision process.  

For the 1D engine model, the agreement-based method did 

significantly better than the linkage-based method with 

calculated fuel mass injection values of 59.95 [mg] and 65.04 

[mg] respectively. Without knowing the true values of the 

calibrated parameter, fuel mass injected, we may still 

determine that the agreement based calibration method is 

more accurate based on the smaller and more randomly 

distributed discrepancies. Though the superiority of 
agreement based methods is expected from the nature of the 

simulated field data being used in the calibration, this 

example highlights both the importance of selecting 

appropriate calibration measures and the necessity of using 

calibration methods which allow determination of the 

discrepancy of calibrated models. 
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